
♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦

♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ Copyright © 2005 www.Praji.com (1 of 6)

Monte Carlo is a fancy term for simply using random values. Monte Carlo describes any
technique utilizing random values although more complex methods within usually bear
equally complex names since, to paraphrase Dr. Ulfarsson’s cynicism on the matter, re-
searchers like fancy terms for simple things and complex terms for everything else. The
methods presented in this introduction provide a practical foundation upon which even
complex research questions may be successfully attempted.

Introduction
Probability
Integration
Projections
Functions
Conclusion
References

Before covering Monte Carlo Integration or Monte Carlo Probability or Monte Carlo Pro-
jections, it must be recognized that Monte Carlo Anything relies upon randomly gener-
ated values. When Monte Carlo was developed, this was done mechanically via flipping
coins, rolling dice, or spinning a roulette wheel. This was as labor intensive as it was time
consuming; it wasn’t until the advent of powerful computers and the creation of convo-
luted algorithms to formulate pseudo random values, that this process became practical.

The pseudo random generator creates values forming a uniform distribution, meaning all
values between the bounds have equal probabilities of selection. Other distributions such
as the Normal, Gumbel, etc. may be created from U(a,b), but those transformation are
noted here solely to stress the potential and flexibility of the distribution. To acquire a
value between 0 and 1 on a 32-bit system, the computer may:

1. Take an initial value x­0, called the seed, either inputted manually or ac-
quired from the computer’s internal clock.

2. Calculate xn as 75 times xn-1 modulus (231-1), where n is an element of the
natural numbers.

3. Put it between 0 and 1 by dividing xn by (231-2).
4. Repeat 2-4 until the desired number of random values are generated.

(Mooney 12-13)

In Matlab®, the function rand provides a pseudo random value between 0 and 1.

1
2
3
5
6
6
6

Copyright © 2005 Craig Schiller

♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦

Flip a coin. Tally heads. Flip again. Tally heads. Flip again. Tally tails…

From a child’s diversion to a prisoner of war’s distraction, nearly everyone has tried flip-
ping a coin over and over to see how often it lands heads or tails. Depending on the flip-
per’s patience (or boredom), many flips will be made, and, as the phenomena known as
the Law of Large Numbers dictates, the proportion heads and proportion tails will ap-
proach their true proportions of exactly .5.

That was a Monte Carlo simulation for probability. Granted time replaced the coin with
a computer’s pseudo random, it does not preclude these examples from family game night.

♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ Copyright © 2005 www.Praji.com (2 of 6)

What is the probability of getting a seven
or eleven when rolling two dice in craps?

Write code in a Matlab® M-file:

Execute and compare the result with the
actual probability of .222. Try it a few
times for different sample sizes, n, and see
how greatly the solutions vary.

Although the exact proportion can easily
be found by creating a square addition ta-
ble from one through six, tallying the
times seven and eleven appear and divid-
ing by the possibilities, such simple meth-
ods are not always apparent (or existent).

Example 1.1 Example 1.2

In Risk®, the attacker rolls three red dice,
and the defender rolls two white dice. The
highest red die is compared to the highest
white die. The next highest red die is com-
pared to the lowest white die. For each
comparison, the defender loses an army if
the red die is greater than the white die;
otherwise, the attacker looses an army.
Each roll, how many armies are expected
to be lost by the attacker? the defender?

Write code in a Matlab® M-file:

Simulation provides 0.92 and 1.08 armies.

%This solves craps probability
% via a Monte Carlo simulation

n = 1000000 %samples
SoE = 0; %Seven or Eleven

for i=1:n
 switch (roll(6)+roll(6));
 case 7
 SoE = SoE + 1;
 case 11
 SoE = SoE + 1;
 end
end

seven_or_eleven = SoE/n

%This solves Risk® probability
% via a Monte Carlo simulation

n = 1000000 %samples
dl = 0; %Defend loss
for i=1:n
 x = sort([roll(6) roll(6)
 roll(6)],'descend');
 y = sort([roll(6) roll(6)]
 ,'descend');
 if (x(1) > y(1))
 dl = dl + 1;
 end
 if (x(2) > y(2))
 dl = dl + 1;
 end
end
attack_loss_per_roll = 1-dl/n
defend_loss_per_roll = dl/n

Copyright © 2005 Craig Schiller

♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦

♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ Copyright © 2005 www.Praji.com (3 of 6)

Monte Carlo integration utilizes The Mean Value Theorem for Integrals, which states, as
recalled from calculus, that, if the function f(x) is continuous on the interval upon which
integration is to take place, there is a constant average value fave such that:

Rearrangement of Equation 1.1 provides:

Thus Equation 1.2 shows that the integral is the average value of the function multiplied
by the interval. The interval is known; to get the average value use a Monte Carlo simu-
lation.

Monte Carlo simulation is much like implementing a survey, except here the population
sampled is not people but rather is the function between the lower and upper bounds of
integration. Likewise, many statistical assumptions hold true. For example, just as a
person randomly selected from the population is assumed to provide a fixed, non-random
response to the survey, so too does the function of a randomly selected value have a fixed
response. From the responses, the average may be found by taking an arithmetic mean.

Putting everything together creates the expression:

where r is a random number between a and b (rn is used to emphasize that the random
number is not a constant – a new random is selected for each term though it may be the
same as one prior by virtue of luck). The sample size, n, is chosen for a desired accuracy.

Recall from statistics that a larger n reduces the variance, thus increasing the confidence
of the result. Unlike a real survey of a population, a simulation on a computer does not
incur significant costs for an increase in sample size, so ignore the variance and relax as
the computer runs the algorithm below for as many millions of iterations as time allows.

f ave =

1
b−a∫a

b
f x dx (Equation 1.1)

 ∫a

b
f x dx = f ave b−a  (Equation 1.2)

∫a
b
f x dx = b−a ∑n f r n

n  (Equation 1.3)

Start

 Limits: a, b
Samples: n

sum = 0

i = 0
i++

i < n

x = randbetween(a, b)

sum += f(x)

 Y

I = (b-a)•(sum/n)

Output
Integral

Stop

N

Figure 2.1. A computing algorithm for Monte Carlo integration
Copyright © 2005 Craig Schiller

Solve:

Write code in a Matlab® M-file:

Execute and compare the result with the
analytically acquired solution of 50. Try
it a few times for different sample sizes, n,
and see how greatly the solutions vary.

♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦

♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ Copyright © 2005 www.Praji.com (4 of 6)

Example 2.1 Example 2.2

%This code solves y=x via a
% Monte Carlo simulation

a = 0; %lower bound
b = 10; %upper bound
n = 1000000; %samples

sum = 0;

for i=1:n
 x = randbetween(a, b);
 fOFx = x;
 sum = fOFx + sum;
end

Integral = (b—a)*(sum/n)

F x  = ∫0
10
x dx Solve:

Write code in a Matlab® M-file:

This function is rather complicated to in-
tegrate analytically, but Monte Carlo inte-
gration quickly provides an approximate
solution of 12.40.

%This code solves y=x^(2-x)+1
% via a Monte Carlo simulation

a = 0; %lower bound
b = 10; %upper bound
n = 1000000; %samples

sum = 0;

for i=1:n
 x = randbetween(a, b);
 fOFx = x^(2-x)+1;
 sum = fOFx + sum;
end

Integral = (b—a)*(sum/n)

F x  = ∫0
10
x2−x 1 dx

Calculus students may inquire why Monte Carlo integration is used instead of Riemann
Sums, Trapezoidal Rule, etc. The answer is bias. Consider y = x as shown in Figure 2.2,
and see that Riemann Sums will always be above the actual value — smaller step-sizes
cause improvement, but it will always be high. Monte Carlo integration is unbiased. As
Figure 2.3 shows, if done with Monte Carlo integration a hundred-thousand times with
sample size of ten-thousand, the distribution of error is centered about zero.

If Riemann Sums for midpoint were used above, the result would be correct; unfortu-
nately knowing which method and step-size to use requires understanding the function.
Even for small step sizes, of, say, a millionth, if the function also had a period of a mil-
lionth there could be a large systematic error. With Monte Carlo, understanding may
determine if a smaller sample size works; but simply adding a few million to n works too.

0
.0

2
.0

4
.0

6
.0

8
R
el
at

iv
e

Fr
eq

ue
nc

y

-2 -1 0 1 2
Error from Simulation

Based on sample size of 10000 repeated 100000 times

Distribution in Error for a Monte-Carlo Integration of y = x

0
2

4
6

8
10

y

0 2 4 6 8 10
x

Riemann Sum of y=x

Figure 2.2. Riemann Sum of y = x Figure 2.3. Error Distribution of Monte-Carlo

Copyright © 2005 Craig Schiller

♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦

Monte Carlo simulations may be employed in estimating a project’s net cost, completion
time, etc. Begin by breaking a project into steps for which to estimate a lower bound and
upper bound for the variable of interest. Then the simulation draws random values be-
tween the bounds for each step and sums across all steps. The process is repeated thou-
sands of times and a cumulative frequency “S-Curve” is drawn from the results. The S-
Curve allows one to see the most a project will, say, cost at some percentage of the time.

Forecast simulations are typically done with spreadsheet software. In Excel®, the for-
mula for a random number between two bounds is =RANDBETWEEN(lower,upper).
This function represents a uniform distribution; but, other distributions may be used.

♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ Copyright © 2005 www.Praji.com (5 of 6)

Example 3.1

Given the table below showing a four step
project with estimated upper and lower
bounds for the cost, forecast the amount
of money to budget to be 85% confident
that the budget is adequate.

1st: Create a spreadsheet

Step Lower Upper

(1) Planning $500 $1500

(2) Laboratory time $1000 $5000

(3) Interpretation $500 $1500

$500 $2000 (4) Future planning

3rd: Create histrogram bins. Enter 2250,
2750 and drag down to 11250

4th: Create histogram.
Tools >> Data Analysis >> Histogram

5th: Examine the chart output

2nd: Iterate 6000 times by selecting row
three and dragging down to 6002

Trace 85% to the Cumulative % line and
trace down to the bin. So budget away
approximately $7750 to be 85% sure.

Copyright © 2005 Craig Schiller

♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦

There are many common, however cryptic, tasks employed in implementing a Monte
Carlo simulation. Using functions not only makes code more readable but also makes
coding easier. Try, for example, a dice roll or draw from a bounded uniform distribution.

♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ ♠ ♥ ♣ ♦ Copyright © 2005 www.Praji.com (6 of 6)

Al-Dahhan, Muthanna. (2004). Introduction to Computing and Computer Applications. St.
 Louis, MO: Washington University Chemical Engineering Department.
 Milton, Susan J., & Arnold, Jesse C. (2003). Introduction to Probability and Statistics (4th
 ed.). New York: McGraw-Hill Higher Education.
 Mooney, C. Z. (1997). Monte Carlo Simulation (Sage University Paper on Quantitative
 Applications in the Social Sciences, series no. 07-116). Thousand Oaks, CA: Sage.
 Razgaitis, Richard. (2003). Dealmaking Using Real Options and Monte Carlo Analysis.
 Hoboken, NJ: John Wiley & Sons.
 Robert, Christian P., & Casella, George. (2004). Monte Carlo Statistical Methods (2nd ed.).
 New York: Springer Science+Business Media.

 Special thanks to Dr. Al-Dahhan for his advice over the project and to Prof. Nobs for his practical perspective on simulations.

Integration, probability and projections were covered in such a way as to provide a basic,
practicable understanding of Monte Carlo methods, but it must be stressed that this has
been merely an introduction. Although nothing further is necessary to implement these
methods, more is required to do so effectively. Study of advanced topics, including the
use of distributions other than the Uniform distribution (Pareto, Exponential, Normal,
etc.), is recommended for simulation of non-Uniform processes and for improvement of
simulation efficiency.

Create a function to simulate the roll of a
die with sides number of sides.

Write code in a Matlab® M-file:

Note: Matlab®’s int32 function rounds to
the nearest integer; thus, subtracting by .5
is required.

Example 4.1 Example 4.2

function x = roll(sides)
%This function behaves like a
% dice roll for a die of given
% number of sides.

x = int32(sides*(rand)-.5)+1;

Create a function to simulate draws from a
uniform distribution with bounds [a,b].

Write code in a Matlab® M-file:

Simply put, a random number from 0 to 1
is multiplied by the interval b-a and a is
added to put it in place.

function x = randbetween(a,b)
%This function returns a
% pseudo random value between
% bounds a and b

x = ((b-a)*(rand)+a);

Copyright © 2005 Craig Schiller

